Skip to main content
Log in

Static feedback versus fractionality of the electrical elements in the Van der Pol circuit

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, it is shown that by benefiting from a static feedback control signal it is possible to reduce the effect of fractionality of the electrical capacitors on the amplitude of the oscillations produced by a Van der Pol circuit. The averaging method is used in this paper for the behavior analysis of the approximated responses of the under study circuits. Numerical simulation results are presented to confirm the effectiveness of the proposed control technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ionescu, C.M., Machado, J.A.T., De Keyser, R.: Modeling of the lung impedance using a fractional-order ladder network with constant phase elements. IEEE Trans. Biomed. Circuits Syst. 5, 83–89 (2011)

    Article  Google Scholar 

  2. Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59, 1586–1593 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Škovránek, T., Podlubny, I., Petráš, I.: Modeling of the national economies in state-space: a fractional calculus approach. Econ. Model. 29, 1322–1327 (2012)

    Article  Google Scholar 

  4. Narang, A., Shah, S.L., Chen, T.: Continuous-time model identification of fractional-order models with time delays. IET Control Theory Appl. 5, 900–912 (2011)

    Article  MathSciNet  Google Scholar 

  5. Gabano, J.D., Poinot, T., Kanoun, H.: Identification of a thermal system using continuous linear parameter-varying fractional modeling. IET Control Theory Appl. 5, 889–899 (2011)

    Article  MathSciNet  Google Scholar 

  6. Westerlund, S.: Dead matter has memory! Phys. Scr. 43, 174–179 (1991)

    Article  Google Scholar 

  7. Westerlund, S.: Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1(5), 826–839 (1994)

    Article  Google Scholar 

  8. Tavazoei, M.S., Haeri, M., Attari, M., Bolouki, S., Siami, M.: More details on analysis of fractional-order Van der Pol oscillator. J. Vib. Control 15, 803–819 (2009)

    Article  MathSciNet  Google Scholar 

  9. Barbosa, R.S., Machado, J.A.T., Vingare, B.M., Calderon, A.J.: Analysis of the Van der Pol oscillator containing derivatives of fractional order. J. Vib. Control 13(9–10), 1291–1301 (2007)

    Article  MATH  Google Scholar 

  10. Barbosa, R.S., Machado, J.A.T., Ferreira, M.I., Tar, K.J.: Dynamics of the fractional order Van der Pol oscillator. In: Proceedings of the 2nd IEEE International Conference on Computational Cybernetics (ICCC’04), Vienna University of Technology, Austria, 30 Aug.–1 Sep., pp. 373–378 (2004)

    Google Scholar 

  11. Gafiychuk, V., Datsko, B., Meleshko, V.: Analysis of fractional order Bonhoeffer–Van der Pol oscillator. Physica A 387, 418–424 (2008)

    Article  Google Scholar 

  12. Gafiychuk, V., Datsko, B., Meleshko, V.: Mathematical modeling of time fractional reaction–diffusion systems. Appl. Comput. Math. 220, 215–225 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Attari, M., Haeri, M., Tavazoei, M.S.: Analysis of a fractional order Van der Pol-like oscillator via describing function method. Nonlinear Dyn. 6, 265–274 (2010)

    Article  Google Scholar 

  14. STMicroelectronics: general purpose JFET quad operational amplifiers. TL084 datasheet (2012). Available online: http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00000493.pdf

  15. Analog Devices: Low cost analog multiplier. AD633 datasheet (2012). Available online: www.analog.com/static/imported-files/data_sheets/AD633.pdf

  16. Corron, N.J.: 2006, A simple circuit implementation of a Van der Pol oscillator. Preprint. Available online: http://www.ccreweb.org/documents/physics/chaos/vdp2006.html

  17. Nayfeh, A.H.: Perturbation Methods. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  18. Nayfeh, A.H.: Resolving controversies in the application of the method of multiple scales and the generalized method of averaging. Nonlinear Dyn. 40, 61–102 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Coppola, V.T.: The method of averaging for Euler’s equations of rigid body motion. Nonlinear Dyn. 14, 295–308 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

  21. Nayfeh, A.H.: Problems in Perturbation. Wiley, New York (1985)

    MATH  Google Scholar 

  22. Biswas, K., Sen, S., Dutta, P.K.: Realization of a constant phase element and its performance study in a differentiator circuit. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 53, 802–806 (2006)

    Article  Google Scholar 

  23. Jesus, I.S., Machado, J.A.T.: Development of fractional-order capacitors based on electrolyte processes. Nonlinear Dyn. 56, 45–55 (2009)

    Article  MATH  Google Scholar 

  24. Mondal, D., Biswas, K.: Performance study of fractional-order integrator using single-component fractional-order element. IET Circuits Devices Syst. 5(4), 334–342 (2011)

    Article  Google Scholar 

  25. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  26. Tavakoli-Kakhki, M., Haeri, M., Tavazoei, M.S.: Notes on the state space realizations of rational order transfer functions. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 58, 1099–1108 (2011)

    Article  MathSciNet  Google Scholar 

  27. Matignon, D.: Stability properties for generalized fractional differential systems. ESAIM Proc. 5, 145–158 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bonnet, C., Partington, J.R.: Coprime factorizations and stability of fractional differential systems. Syst. Control Lett. 41, 167–174 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Petráš, I.: Stability of fractional-order systems with rational orders: a survey. Fract. Calc. Appl. Anal. 12, 269–298 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Ahlfors, L.V.: Complex Analysis, 2nd edn. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  31. Tavazoei, M.S., Haeri, M., Nazari, N.: Analysis of undamped oscillations generated by marginally stable fractional-order systems. Signal Process. 88(12), 2971–2978 (2008)

    Article  MATH  Google Scholar 

  32. Tavazoei, M.S., Haeri, M., Siami, M., Bolouki, S.: Maximum number of frequencies in oscillations generated by fractional-order LTI systems. IEEE Trans. Signal Process. 58, 4003–4012 (2010)

    Article  MathSciNet  Google Scholar 

  33. Tavazoei, M.S.: A note on fractional-order derivatives of periodic functions. Automatica 46, 945–948 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported by Iranian National Science Foundation under grant number 91002517.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahsan Tavakoli-Kakhki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavakoli-Kakhki, M., Tavazoei, M.S. Static feedback versus fractionality of the electrical elements in the Van der Pol circuit. Nonlinear Dyn 72, 365–375 (2013). https://doi.org/10.1007/s11071-012-0719-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0719-1

Keywords

Navigation